论文标题

无限温度不那么热

Infinite Temperature's Not So Hot

论文作者

Lin, Henry, Susskind, Leonard

论文摘要

有人认为,静态固定空间的静态斑块必须是平坦的,或者等效的,玻尔兹曼分布中的温度参数必须是无限的。这似乎是荒谬的:DE Sitter空间中的量子场具有热行为,其温度与地平线的逆半径成正比。这个难题的解决方案是,某些量子系统的行为可以以温度状的数量为特征,该温度是随着温度流向无穷大的有限的。由于缺乏更好的术语,我们称此数量为Tomperature。在本文中,我们将解释Tomperature如何在de Sitter全息图(Syk理论的双重限制的限制)的玩具模型中解决难题。

It has been argued that the entanglement spectrum of a static patch of de Sitter space must be flat, or what is equivalent, the temperature parameter in the Boltzmann distribution must be infinite. This seems absurd: quantum fields in de Sitter space have thermal behavior with a finite temperature proportional to the inverse radius of the horizon. The resolution of this puzzle is that the behavior of some quantum systems can be characterized by a temperature-like quantity which remains finite as the temperature goes to infinity. For want of a better term we have called this quantity tomperature. In this paper we will explain how tomperature resolves the puzzle in a proposed toy model of de Sitter holography -- the double-scaled limit of SYK theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源