论文标题

$ f(q,t)$重力中的静态球形对称虫洞

Static spherically symmetric wormholes in $f(Q,T)$ gravity

论文作者

Tayde, Moreshwar, Hassan, Zinnat, Sahoo, P. K., Gutti, Sashideep

论文摘要

在本文中,我们在最近提出的对称远程重力的扩展中获得了虫洞溶液,称为$ f(q,t)$重力。在这里,重力拉格朗日$ l $由任意函数$ f $ $ q $和$ t $定义(其中$ q $是非物质标量表,而$ t $是能量量张量的轨迹)。在这项研究中,我们在一般的$ f(q,t)$ gravity的背景下获得了静态球形对称虫洞度量的场方程。我们使用(i)线性EOS和(ii)各向异性关系研究虫洞溶液。我们采用两种不同形式的$ f(q,t)$(a)线性$ f(q,t)=αq+βT$和(b)非线性$ f(q,t)= q+λq^2+ηt$来研究这些解决方案。我们研究了各种能源条件,以寻求我们获得的解决方案中的保存和违规。我们发现,在我们假定的$ f(q,t)$的假定形式的两种情况下,NEC均受到侵犯。最后,我们使用Tolman-Oppenheimer-Volkov(TOV)方程进行稳定分析。

In this article we obtain wormhole solutions in the recently proposed extension of symmetric teleparallel gravity called $f(Q,T)$ gravity. Here, the gravitational Lagrangian $L$ is defined by an arbitrary function $f$ of $Q$ and $T$ (where $Q$ is the non-metricity scalar, while $T$ is the trace of the energy-momentum tensor). In this study, we obtain the field equations for a static spherically symmetric wormhole metric in the context of a general $f(Q,T)$ gravity. We study the wormhole solutions with (i) linear EoS and (ii) anisotropy relation. We adopt two different forms of $f(Q,T)$ (a) linear $f(Q,T)=αQ+βT$ and (b) non-linear $f(Q,T)=Q+λQ^2+ηT$ to investigate these solutions. We investigate the various energy conditions to look for preservation and violation among the solutions that we obtained. We find that NEC is violated in both cases of our assumed forms of $f(Q,T)$. Finally, we perform the stability analysis using Tolman-Oppenheimer-Volkov (TOV) equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源