论文标题
确切可溶解的模型,用于1D中的量子临界点
Exactly solvable model for a deconfined quantum critical point in 1D
论文作者
论文摘要
我们为(1+1)尺寸中的解义量子临界点(DQCP)构建了一个准确的溶解晶格模型。该DQCP发生在不寻常的环境中,即在A(2+1)尺寸的Bosonional Bosonic对称性受保护的拓扑相(SPT)的边缘,$ \ MATHBB {Z} _2 \ times \ times \ times \ Mathbb {z} _2 _2 _2 $对称。 DQCP描述了两个间隙边缘之间的过渡,这些边缘破裂了不同的$ \ Mathbb {z} _2 $ subgroups的整个$ \ mathbb {z} _2 \ times \ times \ mathbb {z} _2 _2 $ symmetry。我们的构造基于SPT边缘理论与$ \ Mathbb {Z} _4 $ spin链之间的精确映射。该映射显示该系统中的DQCP与普通的$ \ Mathbb {z} _4 $对称打破关键点直接相关。
We construct an exactly solvable lattice model for a deconfined quantum critical point (DQCP) in (1+1) dimensions. This DQCP occurs in an unusual setting, namely at the edge of a (2+1) dimensional bosonic symmetry protected topological phase (SPT) with $\mathbb{Z}_2\times\mathbb{Z}_2$ symmetry. The DQCP describes a transition between two gapped edges that break different $\mathbb{Z}_2$ subgroups of the full $\mathbb{Z}_2\times\mathbb{Z}_2$ symmetry. Our construction is based on an exact mapping between the SPT edge theory and a $\mathbb{Z}_4$ spin chain. This mapping reveals that DQCPs in this system are directly related to ordinary $\mathbb{Z}_4$ symmetry breaking critical points.