论文标题
磁性形成的新场景:泰勒 - 苏普利特·迪纳摩(Tayler-Spruit Dynamo)在后卫旋转
A new scenario for magnetar formation: Tayler-Spruit dynamo in a proto-neutron star spun up by fallback
论文作者
论文摘要
磁铁是孤立的年轻中子星,其特征是宇宙中已知的最激烈的磁场。他们的磁场的起源仍然是一个具有挑战性的问题。通过发电机作用通过发电机进行的原位磁场扩增是在快速旋转祖细胞中产生超强磁场的一个有前途的过程。但是,目前尚不清楚携带快速核心旋转的祖细胞的比例足以解释整个磁场种群。为了解决这一点,我们提出了一种新的磁性形成场景,其中超新星后备旋转了一个缓慢旋转的原始中性恒星。我们认为,这可以触发泰勒 - 推普发电机的开发,而其他发电机过程则不受欢迎。使用以前在此发电机上完成的作品和模拟来表征后备,我们得出了对原始恒星旋转和磁场的耦合演变进行建模的方程式。与放大时间尺度的分析估计值和磁场的饱和值的分析估计值相比,它们的不同后备质量的时间整合。我们发现,磁场在核心反弹后的$ 20 $至$ 40 $中被放大,并且径向磁场以强度为$ 10^{14} -10^{15} $ g饱和,因此跨越了Magnetar的偶极磁场。我们还比较了两种提出的饱和机制的预测,表明可以为中子星旋转到旋转期$ \ lysSim8 $ ms和$ \ simsim28 $ ms,可以生成类似磁场的磁场,对应于后备$ \ gtressim4 \ gtrsim4 \ times10^{ - 2} { - 2} { - 2} {\ rm mm mm mm mm mm} $ \ gtrsim10^{ - 2} {\ rm m} _ {\ odot} $。因此,我们的结果表明,磁铁可以是由与最近的超新星模拟兼容的后退质量的缓慢旋转祖细胞形成的,并导致原始中子恒星的合理初始旋转周期。
Magnetars are isolated young neutron stars characterized by the most intense magnetic fields known in the universe. The origin of their magnetic field is still a challenging question. In situ magnetic field amplification by dynamo action is a promising process to generate ultra-strong magnetic fields in fast-rotating progenitors. However, it is unclear whether the fraction of progenitors harboring fast core rotation is sufficient to explain the entire magnetar population. To address this point, we propose a new scenario for magnetar formation, in which a slow-rotating proto-neutron star is spun up by the supernova fallback. We argue that this can trigger the development of the Tayler-Spruit dynamo while other dynamo processes are disfavored. Using previous works done on this dynamo and simulations to characterize the fallback, we derive equations modelling the coupled evolution of the proto-neutron star rotation and magnetic field. Their time integration for different fallback masses is successfully compared with analytical estimates of the amplification timescales and saturation value of the magnetic field. We find that the magnetic field is amplified within $20$ to $40$s after the core bounce, and that the radial magnetic field saturates at intensities $10^{14}-10^{15}$G, therefore spanning the full range of magnetar's dipolar magnetic fields. We also compare predictions of two proposed saturation mechanisms showing that magnetar-like magnetic fields can be generated for neutron star spun up to rotation periods $\lesssim8$ms and $\lesssim28$ms, corresponding to fallback masses $\gtrsim4\times10^{-2}{\rm M}_{\odot}$ and $\gtrsim10^{-2}{\rm M}_{\odot}$. Thus, our results suggest that magnetars can be formed from slow-rotating progenitors for fallback masses compatible with recent supernova simulations and leading to plausible initial rotation periods of the proto-neutron star.