论文标题

部分可观测时空混沌系统的无模型预测

Periodic orbits in the Ott-Antonsen manifold

论文作者

Omel'chenko, Oleh

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In their seminal paper [Chaos 18, 037113 (2008)], E. Ott and T. M. Antonsen showed that large groups of phase oscillators driven by a certain type of common force display low dimensional long-term dynamics, which is described by a small number of ordinary differential equations. This fact was later used as a simplifying reduction technique in many studies of synchronization phenomena occurring in networks of coupled oscillators and in neural networks. Most of these studies focused mainly on partially synchronized states corresponding to the equilibrium-type dynamics in the so called Ott-Antonsen manifold. Going beyond this paradigm, here we propose a universal approach for the efficient analysis of partially synchronized states with non-equilibrium periodic collective dynamics. Our method is based on the observation that the Poincaré map of the complex Riccati equation, which describes the dynamics in the Ott-Antonsen manifold, coincides with the well-known Möbius transformation. To illustrate the possibilities of our method, we use it to calculate a complete bifurcation diagram of travelling chimera states in a ring network of phase oscillators with asymmetric nonlocal coupling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源