论文标题

贝叶斯和常见的合成控制推断

Bayesian and Frequentist Inference for Synthetic Controls

论文作者

Martinez, Ignacio, Vives-i-Bastida, Jaume

论文摘要

合成控制方法已成为通过观察数据估计因果效应的广泛流行工具。尽管如此,合成控制方法的推断仍然具有挑战性。通常,推论结果依赖于线性因子模型数据生成过程。在本文中,我们表征了因子模型原语(因子负载)的条件,统计风险最小化器是合成控制(在单纯形中)。然后,我们提出了一种贝叶斯替代合成控制方法的替代方案,该方法保留了标准方法的主要特征,并提供了一种新的有效推理方法。我们探索了伯恩斯坦 - 冯·米塞斯风格的结果,以将我们的贝叶斯推断与常见的推论联系起来。对于线性因子模型框架,我们表明,合成控制权重的最大似然估计器(MLE)可以始终估计处理单元的潜在结果的预测功能,并且我们的贝叶斯估计量在总变化属性中渐近接近MLE。通过模拟,我们表明,即使在稀疏设置中,贝叶斯和频繁的方法之间也存在融合。最后,我们采用这种方法来重新研究德国重新统一和加泰罗尼亚分裂运动的经济成本的研究。贝叶斯合成控制方法可在Bsynth r包装中获得。

The synthetic control method has become a widely popular tool to estimate causal effects with observational data. Despite this, inference for synthetic control methods remains challenging. Often, inferential results rely on linear factor model data generating processes. In this paper, we characterize the conditions on the factor model primitives (the factor loadings) for which the statistical risk minimizers are synthetic controls (in the simplex). Then, we propose a Bayesian alternative to the synthetic control method that preserves the main features of the standard method and provides a new way of doing valid inference. We explore a Bernstein-von Mises style result to link our Bayesian inference to the frequentist inference. For linear factor model frameworks we show that a maximum likelihood estimator (MLE) of the synthetic control weights can consistently estimate the predictive function of the potential outcomes for the treated unit and that our Bayes estimator is asymptotically close to the MLE in the total variation sense. Through simulations, we show that there is convergence between the Bayes and frequentist approach even in sparse settings. Finally, we apply the method to re-visit the study of the economic costs of the German re-unification and the Catalan secession movement. The Bayesian synthetic control method is available in the bsynth R-package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源