论文标题
在$ l^p([0,1])$的均匀和粗刚性上
On uniform and coarse rigidity of $L^p([0,1])$
论文作者
论文摘要
如果$ x $是一个几乎是带有正轴测图组的几乎可以传递的班克空间(例如,如果$ x = l^p([0,1])$,$ 1 \ leqslant p <\ infty $)和$ x $承认,均匀连续的映射$ x \ x \ x \ x \ x \ oversetϕ \ longrightArlow fornementarow e $ $ $ \ | ϕ(x) - ϕ(y)\ |> 0 $$对于某些$ r> 0 $,然后$ x $同时均匀且粗糙的嵌入到Banach Space $ V $中,该$ V $在$ l^2(e)$中有限表示。
If $X$ is an almost transitive Banach space with amenable isometry group (for example, if $X=L^p([0,1])$ with $1\leqslant p<\infty$) and $X$ admits a uniformly continuous map $X\oversetϕ\longrightarrow E$ into a Banach space $E$ satisfying $$\inf_{\|x-y\|=r} \| ϕ(x)-ϕ(y)\|>0 $$ for some $r>0$, then $X$ admits a simultaneously uniform and coarse embedding into a Banach space $V$ that is finitely representable in $L^2(E)$.