论文标题
部分可观测时空混沌系统的无模型预测
ShapePU: A New PU Learning Framework Regularized by Global Consistency for Scribble Supervised Cardiac Segmentation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Cardiac segmentation is an essential step for the diagnosis of cardiovascular diseases. However, pixel-wise dense labeling is both costly and time-consuming. Scribble, as a form of sparse annotation, is more accessible than full annotations. However, it's particularly challenging to train a segmentation network with weak supervision from scribbles. To tackle this problem, we propose a new scribble-guided method for cardiac segmentation, based on the Positive-Unlabeled (PU) learning framework and global consistency regularization, and termed as ShapePU. To leverage unlabeled pixels via PU learning, we first present an Expectation-Maximization (EM) algorithm to estimate the proportion of each class in the unlabeled pixels. Given the estimated ratios, we then introduce the marginal probability maximization to identify the classes of unlabeled pixels. To exploit shape knowledge, we apply cutout operations to training images, and penalize the inconsistent segmentation results. Evaluated on two open datasets, i.e, ACDC and MSCMRseg, our scribble-supervised ShapePU surpassed the fully supervised approach respectively by 1.4% and 9.8% in average Dice, and outperformed the state-of-the-art weakly supervised and PU learning methods by large margins. Our code is available at https://github.com/BWGZK/ShapePU.