论文标题

一种分析图像分类的新型统计方法

A novel statistical approach to analyze image classification

论文作者

Chen, Juntong, Langer, Sophie, Schmidt-Hieber, Johannes

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The recent statistical theory of neural networks focuses on nonparametric denoising problems that treat randomness as additive noise. Variability in image classification datasets does, however, not originate from additive noise but from variation of the shape and other characteristics of the same object across different images. To address this problem, we introduce a tractable model for supervised image classification. While from the function estimation point of view, every pixel in an image is a variable, and large images lead to high-dimensional function recovery tasks suffering from the curse of dimensionality, increasing the number of pixels in the proposed image deformation model enhances the image resolution and makes the object classification problem easier. We introduce and theoretically analyze three approaches. Two methods combine image alignment with a one-nearest neighbor classifier. Under a separation condition, it is shown that perfect classification is possible. The third method fits a convolutional neural network (CNN) to the data. We derive a rate for the misclassification error that depends on the sample size and the complexity of the deformation class. An empirical study corroborates the theoretical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源