论文标题

Schwarzschild时空的脱皮

Peeling for tensorial wave equations on Schwarzschild spacetime

论文作者

Pham, Truong Xuan

论文摘要

在本文中,我们建立了沿传出和传入的径向测量学的渐近行为,即,在Schwarzschild SpaceTime上的张力fackrell-ipper的脱皮特性和旋转$ \ pm 1 $ teukolsky方程。 Our method combines a conformal compactification with vector field techniques to prove the two-side estimates of the energies of tensorial fields through the future and past null infinity $\mathscr{I}^\pm$ and the initial Cauchy hypersurface $Σ_0 = \left\{ t=0 \right\}$ in a neighbourhood of spacelike infinity $i_0$ far away from the horizo​​n以及未来的及时的无限。我们的结果获得了最佳的初始数据,该数据可确保所有订单的剥离。

In this paper, we establish the asymptotic behaviour along outgoing and incoming radial geodesics, i.e., the peeling property for the tensorial Fackrell-Ipser and spin $\pm 1$ Teukolsky equations on Schwarzschild spacetime. Our method combines a conformal compactification with vector field techniques to prove the two-side estimates of the energies of tensorial fields through the future and past null infinity $\mathscr{I}^\pm$ and the initial Cauchy hypersurface $Σ_0 = \left\{ t=0 \right\}$ in a neighbourhood of spacelike infinity $i_0$ far away from the horizon and future timelike infinity. Our results obtain the optimal initial data which guarantees the peeling at all orders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源