论文标题

HIFI-NET:用于增强水下图像的新型网络

HIFI-Net: A Novel Network for Enhancement to Underwater Images

论文作者

Zhou, Jiajia, Zhuang, Junbin, Zheng, Yan, Wu, Di

论文摘要

本文提出了一个新的用于增强水下图像的网络。它包含基于增强融合单元(RFU)的HAAR小波图像(RFM-HAAR)的增强融合模块,该模块用于融合原始图像以及其中的一些重要信息。实现融合以更好地增强。当该网络将“ HAAR图像成融合图像”时,它被称为HIFI-NET。实验结果表明,在三个正常指标和一个新指标的三个数据集上,提出的HIFI-NET在三个数据集上的许多最先进方法中表现最好。

A novel network for enhancement to underwater images is proposed in this paper. It contains a Reinforcement Fusion Module for Haar wavelet images (RFM-Haar) based on Reinforcement Fusion Unit (RFU), which is used to fuse an original image and some important information within it. Fusion is achieved for better enhancement. As this network make "Haar Images into Fusion Images", it is called HIFI-Net. The experimental results show the proposed HIFI-Net performs best among many state-of-the-art methods on three datasets at three normal metrics and a new metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源