论文标题
MICAL:基于信息的CNN辅助因子图,用于从EEG信号癫痫发作检测
MICAL: Mutual Information-Based CNN-Aided Learned Factor Graphs for Seizure Detection from EEG Signals
论文作者
论文摘要
我们开发了一种基于混合模型的数据驱动检测算法,称为基于信息的CNNAIDELCHED因子图(MICAL),用于从EEG信号中检测折衷的癫痫发作。我们提出的方法包含三个主要组成部分:神经相互信息(MI)估计器,1D卷积神经网络(CNN)和因子图推断。由于在癫痫发作期间,大脑中一个或多个区域的电活动变得相关,因此我们使用神经MI估计器来测量通道间的统计依赖性。我们还设计了1D CNN,以从RAW EEG信号中提取其他功能。由于从神经MI估计器和CNN获得的合并特征获得的软估计值不捕获不同的EEG块之间的时间相关性,因此我们不将其用作癫痫发作状态的估计值,而是计算因子图的函数节点。最终的因子图允许结构化推断,从而利用时间相关性,以进一步改善检测性能。在公共CHB-MIT数据库中,我们使用公共CHB-MIT数据库进行了三种评估方法,包括6倍4倍患者交叉验证,所有患者培训;和每个患者培训。我们的评估系统地证明了通过完整的消融研究并测量六个绩效指标,在Mical中的每个元素的影响。结果表明,所提出的方法在6倍4倍的四分之一病人的交叉验证和所有患者培训中获得了最先进的绩效,并表明了卓越的概括性。
We develop a hybrid model-based data-driven seizure detection algorithm called Mutual Information-based CNNAided Learned factor graphs (MICAL) for detection of eclectic seizures from EEG signals. Our proposed method contains three main components: a neural mutual information (MI) estimator, 1D convolutional neural network (CNN), and factor graph inference. Since during seizure the electrical activity in one or more regions in the brain becomes correlated, we use neural MI estimators to measure inter-channel statistical dependence. We also design a 1D CNN to extract additional features from raw EEG signals. Since the soft estimates obtained as the combined features from the neural MI estimator and the CNN do not capture the temporal correlation between different EEG blocks, we use them not as estimates of the seizure state, but to compute the function nodes of a factor graph. The resulting factor graphs allows structured inference which exploits the temporal correlation for further improving the detection performance. On public CHB-MIT database, We conduct three evaluation approaches using the public CHB-MIT database, including 6-fold leave-four-patients-out cross-validation, all patient training; and per patient training. Our evaluations systematically demonstrate the impact of each element in MICAL through a complete ablation study and measuring six performance metrics. It is shown that the proposed method obtains state-of-the-art performance specifically in 6-fold leave-four-patients-out cross-validation and all patient training, demonstrating a superior generalizability.