论文标题

基于最大熵形式主义的量子状态断层扫描的变分方法

Variational Approach to Quantum State Tomography based on Maximal Entropy Formalism

论文作者

Gupta, Rishabh, Sajjan, Manas, Levine, Raphael D., Kais, Sabre

论文摘要

量子层析成像是量子计算的组成部分,为验证各种量子设备提供了起点。国家断层扫描领域的中心任务之一是用量子系统的量子状态重建高保真度。从实际量子设备的实验中,可以获得不同运算符的平均测量值。通过输入的数据,在本报告中,我们采用了最大熵形式主义来构建与给定期望值集一致的最小偏见的混合量子状态。即使原则上,报告的形式主义是相当笼统的,应该为一组任意的可观察到,但实际上,我们将证明该算法在信息完整(IC)的Hermitian操作员集中的功效。这样的集合具有独特的指定单个量子状态的优势,从该状态进行了实验测量结果,因此使难得的机会不仅可以构建最小偏置的量子状态,甚至可以在预设耐受性中进行实验准备的确切状态。该算法的主要主力是重建一种能量函数,我们将其指定为系统的有效哈密顿量,并根据最大熵的形式使用Lagrange乘数进行参数化。此后对这些参数进行了优化的变异,因此系统的重建量子状态会在误差阈值中收敛到真实的量子状态。为此,我们采用了一个参数化的量子电路和一个混合量子 - 古典变异算法来获得这种目标状态,从而使我们的配方易于在近期量子设备上实现。

Quantum state tomography is an integral part of quantum computation and offers the starting point for the validation of various quantum devices. One of the central tasks in the field of state tomography is to reconstruct with high fidelity, the quantum states of a quantum system. From an experiment on a real quantum device, one can obtain the mean measurement values of different operators. With such a data as input, in this report we employ the maximal entropy formalism to construct the least biased mixed quantum state that is consistent with the given set of expectation values. Even though in principle, the reported formalism is quite general and should work for an arbitrary set of observables, in practice we shall demonstrate the efficacy of the algorithm on an informationally complete (IC) set of Hermitian operators. Such a set possesses the advantage of uniquely specifying a single quantum state from which the experimental measurements have been sampled and hence renders the rare opportunity to not only construct a least-biased quantum state but even replicate the exact state prepared experimentally within a preset tolerance. The primary workhorse of the algorithm is re-constructing an energy function which we designate as the effective Hamiltonian of the system, and parameterizing it with Lagrange multipliers, according to the formalism of maximal entropy. These parameters are thereafter optimized variationally so that the reconstructed quantum state of the system converges to the true quantum state within an error threshold. To this end, we employ a parameterized quantum circuit and a hybrid quantum-classical variational algorithm to obtain such a target state making our recipe easily implementable on a near-term quantum device.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源