论文标题
深度学习辅助喷气断层扫描,用于研究QGP中的马赫锥
Deep learning assisted jet tomography for the study of Mach cones in QGP
论文作者
论文摘要
当能量的夸克和胶子(称为喷气机)的速度比高能重型离子碰撞中的声音速度快,预计将在膨胀的夸克 - 胶状等离子体(QGP)中形成马赫锥。马赫锥的形状和相关的扩散唤醒对初始喷气生产位置和射流传播方向敏感,而相对于径向流的速度与径向流有关,这是由于QGP和大密度梯度的集体膨胀而变形。重型离子碰撞中喷射引起的马赫锥的形状及其变形提供了动态演化和QGP状态方程的独特而直接的探测。但是,很难在当前最终强子分布的实验测量中识别马赫锥和扩散唤醒,因为它们在所有可能的初始喷气生产位置和传播方向上平均。为了克服这一困难,我们开发了一项深度学习辅助喷气断层扫描,它使用了从喷气机的最终Hadron的完整信息来定位初始的喷气生产位置。这种方法可以帮助限制重离子碰撞中喷气生产的初始区域,并在重型离子碰撞中对具有不同的射流路径长度和方向的马赫式进行差异研究。
Mach cones are expected to form in the expanding quark-gluon plasma (QGP) when energetic quarks and gluons (called jets) traverse the hot medium at a velocity faster than the speed of sound in high-energy heavy-ion collisions. The shape of the Mach cone and the associated diffusion wake are sensitive to the initial jet production location and the jet propagation direction relative to the radial flow because of the distortion by the collective expansion of the QGP and large density gradient. The shape of jet-induced Mach cones and their distortions in heavy-ion collisions provide a unique and direct probe of the dynamical evolution and the equation of state of QGP. However, it is difficult to identify the Mach cone and the diffusion wake in current experimental measurements of final hadron distributions because they are averaged over all possible initial jet production locations and propagation directions. To overcome this difficulty, we develop a deep learning assisted jet tomography which uses the full information of the final hadrons from jets to localize the initial jet production positions. This method can help to constrain the initial regions of jet production in heavy-ion collisions and enable a differential study of Mach-cones with different jet path length and orientation relative to the radial flow of the QGP in heavy-ion collisions.