论文标题

拥抱差距:VAE执行独立的机制分析

Embrace the Gap: VAEs Perform Independent Mechanism Analysis

论文作者

Reizinger, Patrik, Gresele, Luigi, Brady, Jack, von Kügelgen, Julius, Zietlow, Dominik, Schölkopf, Bernhard, Martius, Georg, Brendel, Wieland, Besserve, Michel

论文摘要

变分自动编码器(VAE)是对复杂数据分布进行建模的流行框架;可以通过最大化证据下限(ELBO)来有效地通过变异推断来有效训练,而牺牲了差距,以达到确切的(log-)边缘可能性。尽管VAE通常用于表示学习,但尚不清楚为什么Elbo最大化会产生有用的表示形式,因为未注重的最大似然估计无法扭转数据生成过程。但是,VAE经常在这项任务上取得成功。我们试图通过研究近确定解码器极限的非线性VAE来阐明这一明显的悖论。我们首先证明,在这种制度中,最佳编码器大约将解码器(一种常用但未经证实的猜想)倒转 - 我们称为{\ em em self-Consistency}。利用自稳定性,我们表明Elbo会收敛于正规的对数类样。这使VAE可以执行最近称为独立机制分析(IMA)的内容:它为使用柱正交的雅各布人对解码器增加了电感偏置,这有助于恢复真正的潜在因素。因此,欢迎Elbo与模拟样式之间的差距,因为它对非线性表示学习具有意外的好处。在有关合成和图像数据的实验中,我们显示,当数据生成过程满足IMA假设时,VAE会发现真正的潜在因素。

Variational autoencoders (VAEs) are a popular framework for modeling complex data distributions; they can be efficiently trained via variational inference by maximizing the evidence lower bound (ELBO), at the expense of a gap to the exact (log-)marginal likelihood. While VAEs are commonly used for representation learning, it is unclear why ELBO maximization would yield useful representations, since unregularized maximum likelihood estimation cannot invert the data-generating process. Yet, VAEs often succeed at this task. We seek to elucidate this apparent paradox by studying nonlinear VAEs in the limit of near-deterministic decoders. We first prove that, in this regime, the optimal encoder approximately inverts the decoder -- a commonly used but unproven conjecture -- which we refer to as {\em self-consistency}. Leveraging self-consistency, we show that the ELBO converges to a regularized log-likelihood. This allows VAEs to perform what has recently been termed independent mechanism analysis (IMA): it adds an inductive bias towards decoders with column-orthogonal Jacobians, which helps recovering the true latent factors. The gap between ELBO and log-likelihood is therefore welcome, since it bears unanticipated benefits for nonlinear representation learning. In experiments on synthetic and image data, we show that VAEs uncover the true latent factors when the data generating process satisfies the IMA assumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源