论文标题

个性化联合学习的最佳运输方法

An Optimal Transport Approach to Personalized Federated Learning

论文作者

Farnia, Farzan, Reisizadeh, Amirhossein, Pedarsani, Ramtin, Jadbabaie, Ali

论文摘要

Federated Learning是一个分布式的机器学习范式,旨在使用许多分布式客户的本地数据培训模型。联合学习的一个主要挑战是,客户端的数据示例可能不会分布相同。为了应对这一挑战,已经提出了为每个客户的数据分配量身定制学习模型的个性化联合学习。在本文中,我们将重点放在这个问题上,并提出一种基于最佳运输(FEDOT)作为一种学习算法的新型个性化联合学习计划,该算法学习了将数据点传输到共同分布以及所应用传输图下的预测模型的最佳传输图。为了提出FedOt问题,我们将两个概率分布之间的标准最佳运输任务扩展到多核心最佳运输问题,目的是将样品从多个分布传输到共同的概率域。然后,我们利用多 - 边界最佳运输问题的结果来将FedOt作为最小值优化问题,并分析其概括和优化特性。我们讨论了几个数值实验的结果,以评估联邦学习问题中异质数据分布下的FedOT的性能。

Federated learning is a distributed machine learning paradigm, which aims to train a model using the local data of many distributed clients. A key challenge in federated learning is that the data samples across the clients may not be identically distributed. To address this challenge, personalized federated learning with the goal of tailoring the learned model to the data distribution of every individual client has been proposed. In this paper, we focus on this problem and propose a novel personalized Federated Learning scheme based on Optimal Transport (FedOT) as a learning algorithm that learns the optimal transport maps for transferring data points to a common distribution as well as the prediction model under the applied transport map. To formulate the FedOT problem, we extend the standard optimal transport task between two probability distributions to multi-marginal optimal transport problems with the goal of transporting samples from multiple distributions to a common probability domain. We then leverage the results on multi-marginal optimal transport problems to formulate FedOT as a min-max optimization problem and analyze its generalization and optimization properties. We discuss the results of several numerical experiments to evaluate the performance of FedOT under heterogeneous data distributions in federated learning problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源