论文标题
最佳的停止理论,用于分配强劲的卖家
Optimal Stopping Theory for a Distributionally Robust Seller
论文作者
论文摘要
在线市场上的卖家面临着确定未来未来优惠的合适时间的挑战。经典停止理论假设卖方对价值分布有充分的了解,并利用这些知识来确定最大化预期福利的规则。但是,实际上,通常必须根据稀缺数据或专家预测来确定停止规则。考虑一个卖方,该商品有一件待售的商品,并从某些价值分布中获得连续的报价。关于是否接受要约的决定是不可撤销的,价值分布仅部分知道。因此,我们让卖方采用强大的最大化策略,假设价值分布是根据本质上对敌对选择的,以最大程度地降低所接受要约的价值。我们为这个停止问题提供了一种通用的最大值解决方案,该解决方案为所有可能的统计信息结构确定了卖方的最佳(基于阈值的)停止规则。然后,我们对各种歧义集进行了详细的分析,这些分析依赖于有关共同均值,分散(方差或均值绝对偏差)和分布的支持的知识。我们向这些信息结构展示,卖方的停止规则包括降低阈值融合到共同均值的阈值,从长远来看,自然界的对抗性响应是始终创建一个全有或无所不包的情况。最大值解决方案还揭示了会发生的情况或报价数量越来越大。
Sellers in online markets face the challenge of determining the right time to sell in view of uncertain future offers. Classical stopping theory assumes that sellers have full knowledge of the value distributions, and leverage this knowledge to determine stopping rules that maximize expected welfare. In practice, however, stopping rules must often be determined under partial information, based on scarce data or expert predictions. Consider a seller that has one item for sale and receives successive offers drawn from some value distributions. The decision on whether or not to accept an offer is irrevocable, and the value distributions are only partially known. We therefore let the seller adopt a robust maximin strategy, assuming that value distributions are chosen adversarially by nature to minimize the value of the accepted offer. We provide a general maximin solution to this stopping problem that identifies the optimal (threshold-based) stopping rule for the seller for all possible statistical information structures. We then perform a detailed analysis for various ambiguity sets relying on knowledge about the common mean, dispersion (variance or mean absolute deviation) and support of the distributions. We show for these information structures that the seller's stopping rule consists of decreasing thresholds converging to the common mean, and that nature's adversarial response, in the long run, is to always create an all-or-nothing scenario. The maximin solutions also reveal what happens as dispersion or the number of offers grows large.