论文标题

$ p $ -superminimizers的逆变和全球结果

Convergence and local-to-global results for $p$-superminimizers on quasiopen sets

论文作者

Björn, Anders, Björn, Jana, Latvala, Visa

论文摘要

在本文中,获得了公制空间中的准蛋白套装上的精细$ p $ - (超级)最小化器的几个收敛结果。为此,我们推断出$ p $ - (超级)的cAccioppoli型不平等和局部到全球原则。这些考虑因素的重要部分是表明该功能属于合适的局部罚款Sobolev空间。我们证明了一个完整的度量空间,配备了两倍的度量,支持$ p $-poincaré不平等,$ 1 <p <\ p <\ infty $。但是,大多数结果也是未加权的$ \ mathbf {r}^n $的新结果。

In this paper, several convergence results for fine $p$-(super)minimizers on quasiopen sets in metric spaces are obtained. For this purpose, we deduce a Caccioppoli-type inequality and local-to-global principles for fine $p$-(super)minimizers on quasiopen sets. A substantial part of these considerations is to show that the functions belong to a suitable local fine Sobolev space. We prove our results for a complete metric space equipped with a doubling measure supporting a $p$-Poincaré inequality with $1<p< \infty$. However, most of the results are new also for unweighted $\mathbf{R}^n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源