论文标题

Perazzo 3倍和弱Lefschetz物业

Perazzo 3-folds and the weak Lefschetz property

论文作者

Fiorindo, Luca, Mezzetti, Emilia, Miró-Roig, Rosa M.

论文摘要

我们在$ \ mathbb p^4 $中处理Perazzo 3倍,即HyperSurfaces $ x = V(f) $ f(x_0,x_1,x_2,u,u,v)= p_0(u,v)x_0+p_1(u,v)x_1+p_1+p_2(u,v)x_2+g(u,v)$,其中$ p_0,p_0,p_1,p_1,p_2 $是elgebrailly依赖的,但$ d-1 $ $ d-1 $ d-1 $ d-1学位$ D $。 Perazzo 3倍消失的Hessian,因此,相关分级的Artinian Gorenstein代数$ A_F $失败了强大的Lefschetz物业。在本文中,我们确定了$ a_f $的最大和最小Hilbert功能,我们证明,如果$ a_f $具有最大的Hilbert功能,则会使弱Lefschetz属性失败,而当它具有最低Hilbert功能时,它会满足弱Lefschetz属性。此外,我们将所有perazzo分为$ \ mathbb p^4 $中的所有perazzo,以使$ a_f $具有最低hilbert功能。

We deal with Perazzo 3-folds in $\mathbb P^4$, i.e. hypersurfaces $X=V(f)\subset \mathbb P^4$ of degree $d$ defined by a homogeneous polynomial $f(x_0,x_1,x_2,u,v)=p_0(u,v)x_0+p_1(u,v)x_1+p_2(u,v)x_2+g(u,v)$, where $p_0,p_1,p_2$ are algebraically dependent but linearly independent forms of degree $d-1$ in $u,v$, and $g$ is a form in $u,v$ of degree $d$. Perazzo 3-folds have vanishing hessian and, hence, the associated graded artinian Gorenstein algebra $A_f$ fails the strong Lefschetz property. In this paper, we determine the maximum and minimum Hilbert function of $A_f$ and we prove that if $A_f$ has maximal Hilbert function it fails the weak Lefschetz property, while it satisfies the weak Lefschetz property when it has minimum Hilbert function. In addition, we classify all Perazzo 3-folds in $\mathbb P^4$ such that $A_f$ has minimum Hilbert function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源