论文标题

玉米中模型辅助T X E X M的框架

A framework for model-assisted T x E x M exploration in maize

论文作者

Hsiao, Jennifer, Kim, Soo-Hyung, Timlin, Dennis J., Mueller, Nathaniel D., Swann, Abigail L. S.

论文摘要

新作物特征和调整管理实践的繁殖是减轻产量损失并在气候变化下保持收益稳定性的关键途径。但是,通过传统的育种实践和农艺现场试验来确定不同生长区域的高性能植物特征和管理选择通常是时间和资源密集的。机械作物模拟模型可以用作有力的工具,以帮助合成裁剪信息,设定育种目标并制定适应策略来维持粮食生产。在这项研究中,我们为机械作物模型(MAIZSIM)开发了一个模拟框架,以在特征X环境X管理局势中运行许多模拟,并演示如何使用这种建模框架来识别理想的特质性质管理组合,从而最大程度地提高了美国的不同产量和产量的稳定性。

Breeding for new crop characteristics and adjusting management practices are critical avenues to mitigate yield loss and maintain yield stability under a changing climate. However, identifying high-performing plant traits and management options for different growing regions through traditional breeding practices and agronomic field trials is often time and resource-intensive. Mechanistic crop simulation models can serve as powerful tools to help synthesize cropping information, set breeding targets, and develop adaptation strategies to sustain food production. In this study, we develop a modeling framework for a mechanistic crop model (MAIZSIM) to run many simulations within a trait x environment x management landscape and demonstrate how such a modeling framework could be used to identify ideal trait-management combinations that maximize yield and yield stability for different agro-climate regions in the US.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源