论文标题

放大,推理和客观经典信息的表现

Amplification, inference, and the manifestation of objective classical information

论文作者

Zwolak, Michael

论文摘要

我们的日常现实的特点是客观信息$ \ unicode {x2013} $信息,这些信息是由与量子系统交互的环境选择和放大的。许多观察者可以通过对环境碎片进行测量来准确地间接推断该信息。 The correlations between the system, $\mathcal{S}$, and a fragment, $\mathcal{F}$, of the environment, $\mathcal{E}$, is often quantified by the quantum mutual information or the Holevo quantity that bounds the classical information about $\mathcal{S}$ transmittable by a quantum channel $\mathcal{F}$.后者是一个量子互信息,但具有经典的量词状态,其中测量已在$ \ Mathcal {s} $上选择结果。该测量通常反映了其余环境的影响,$ \ Mathcal {e}/\ Mathcal {f} $,但也可以反映出假设的问题来推断$ \ Mathcal {s} \ Mathcal {f} $相关性的结构。最近,Touil等人。检查了一个不同的孔值数量,一个来自量子古典状态(量子$ \ nathcal {s} $到测量$ \ Mathcal {f} $)。如下所示,此数量上限在$ \ MATHCAL {F} $中有关$ \ Mathcal {s} $的任何可访问的经典信息,并且比典型的漏洞数量可能会产生更严格的界限。当存在良好的充实时,$ \ unicode {x2013} $当剩余的环境($ \ Mathcal {e}/\ Mathcal {f} $)有效地测量了$ \ Mathcal {s} $ \ unicode {x2013} $的指针状态。对于Touil等人的特定模型,可访问的信息与最佳检测的误差概率有关,因此具有与量子Chernoff结合的相同行为。后者反映了放大,并提供了一种通用方法以及一个单次框架,以量化有关$ \ Mathcal {S} $的缺失的经典信息记录。

Our everyday reality is characterized by objective information$\unicode{x2013}$information that is selected and amplified by the environment that interacts with quantum systems. Many observers can accurately infer that information indirectly by making measurements on fragments of the environment. The correlations between the system, $\mathcal{S}$, and a fragment, $\mathcal{F}$, of the environment, $\mathcal{E}$, is often quantified by the quantum mutual information or the Holevo quantity that bounds the classical information about $\mathcal{S}$ transmittable by a quantum channel $\mathcal{F}$. The latter is a quantum mutual information but of a classical-quantum state where measurement has selected outcomes on $\mathcal{S}$. The measurement generically reflects the influence of the remaining environment, $\mathcal{E}/\mathcal{F}$, but can also reflect hypothetical questions to deduce the structure of $\mathcal{S}\mathcal{F}$ correlations. Recently, Touil et al. examined a different Holevo quantity, one from a quantum-classical state (a quantum $\mathcal{S}$ to a measured $\mathcal{F}$). As shown here, this quantity upper bounds any accessible classical information about $\mathcal{S}$ in $\mathcal{F}$ and can yield a tighter bound than the typical Holevo quantity. When good decoherence is present$\unicode{x2013}$when the remaining environment, $\mathcal{E}/\mathcal{F}$, has effectively measured the pointer states of $\mathcal{S}$$\unicode{x2013}$this accessibility bound is the accessible information. For the specific model of Touil et al., the accessible information is related to the error probability for optimal detection and, thus, has the same behavior as the quantum Chernoff bound. The latter reflects amplification and provides a universal approach, as well as a single-shot framework, to quantify records of the missing, classical information about $\mathcal{S}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源