论文标题
银河系星际伽马射线发射的离散组件的深度学习模型
Deep Learning Models of the Discrete Component of the Galactic Interstellar Gamma-Ray Emission
论文作者
论文摘要
Fermi-LAT数据中可能存在H2星际气体中小尺度(或离散)结构的重要点状组件,但是对这种发射进行建模依赖于仅在有限天空中可用的稀有气体示踪剂的观察结果。确定这一贡献对于区分伽马射线点源与星际气体和更好地表征扩展的伽马射线来源很重要。我们设计和训练卷积神经网络以预测这些罕见示踪剂不存在的发射,并讨论该组件对Fermi-LAT数据分析的影响。特别是,我们通过准确地模拟数据中的点状结构,以帮助区分过量的点状,以确定点状结构,从而在表征Fermi-Lat银河中心过剩的表征中利用这种方法来利用这种方法。我们表明,可以有效地采用深度学习来对这些罕见的H2代理追踪的伽马射线发射进行建模,以在数据丰富的区域统计显着性,这支持了前景在未观察到的区域中采用这些方法。
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data, but modeling this emission relies on observations of rare gas tracers only available in limited regions of the sky. Identifying this contribution is important to discriminate gamma-ray point sources from interstellar gas, and to better characterize extended gamma-ray sources. We design and train convolutional neural networks to predict this emission where observations of these rare tracers do not exist and discuss the impact of this component on the analysis of the Fermi-LAT data. In particular, we evaluate prospects to exploit this methodology in the characterization of the Fermi-LAT Galactic center excess through accurate modeling of point-like structures in the data to help distinguish between a point-like or smooth nature for the excess. We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions, supporting prospects to employ these methods in yet unobserved regions.