论文标题
局部晶格失真对FCC合金中空置迁移壁垒的机理
Mechanism of Local Lattice Distortion Effects on Vacancy Migration Barriers in FCC Alloys
论文作者
论文摘要
在多组分合金中,准确预测空置迁移能障碍$ΔE_A$是极具挑战性但对于在许多技术应用中建模合金行为所需的扩散转化动力学的发展至关重要的。在这里,由$ΔE_A$和使用密度功能理论计算的许多(> 1000)空置迁移事件的能量驱动力$ΔE$ $ΔE$在模型面对面的立方体al-mg-Zn Alloys的不同本地化学环境中,使用密度功能理论计算出来的$ΔE_A$。由于溶质原子(例如Mg)与矩阵元素不同的溶质原子(例如Mg)引起的局部晶格失真效应,因此,一种迁移原子的$ΔE_A$的变化主要来自$Δe_A\ equivequivΔe_a -eque_a -eque_a -eque_a- \ eque_a- \ frac \ frac \ frac {1} {1} {1} {2} {2} {2} {2} e $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。为了了解波动,显示四分之一的功能可以准确描述每个空位迁移事件的最小能量路径(MEP)的能量格局。对四分之一函数的分析表明,$Δe_a$可以用$Δe_a\ofαk_fd^2 $近似,其中$α\ sim 0.022 $是所有类型的迁移原子的常数。这里$ d $是两个相邻平衡位置和$ k_f $之间迁移原子的距离,是该原子在这两个平衡位置下的平均振动弹簧常数。 $ k_f $和$ d $定量地描述了MEP在不同本地化学环境中的初始和最终状态下对MEP的曲率和位置的晶格失真效应。我们还将局部晶格职业用作训练替代模型的输入,以预测四分之一功能的系数,该系数准确有效地输出$ΔE_A$和$ΔE$,作为在Al-MG-ZN Alloys中扩散转化的中尺度研究的必要输入。
Accurate prediction of vacancy migration energy barriers, $ΔE_a$, in multi-component alloys is extremely challenging yet critical for the development of diffusional transformation kinetics needed to model alloy behavior in many technological applications. Here, results from $ΔE_a$ and the energy driving force $ΔE$ of many (>1000) vacancy migration events calculated using density functional theory and nudged elastic band method show large changes (~1eV) of $ΔE_a$ in different local chemical environments of the model face-centered cubic Al-Mg-Zn alloys. Due to local lattice distortion effects induced by solute atoms (such as Mg) with different sizes than the matrix element (Al), the changes of $ΔE_a$ for one type of migrating atoms originate primarily from fluctuations of $Δe_a\equiv ΔE_a - \frac{1}{2}ΔE$. To understand the fluctuations, a quartic function is shown to accurately describe the energy landscape of the minimum energy path (MEP) for each vacancy migration event. Analyses of the quartic function show that $Δe_a$ can be approximated with $Δe_a \approx αk_fD^2$, where $α\sim 0.022$ is a constant of all types of migrating atoms. Here $D$ is the distance of a migrating atom between two adjacent equilibrium positions and $k_f$ is the average vibration spring constant of this atom at these two equilibrium positions. $k_f$ and $D$ quantitatively describe the lattice distortion effects on the curvatures and locations of the MEP at its initial and final states in different local chemical environments. We also used the local lattice occupations as inputs to train surrogate models to predict coefficients of the quartic function, which accurately and efficiently output both $ΔE_a$ and $ΔE$ as the necessary inputs for the mesoscale studies of diffusional transformation in Al-Mg-Zn alloys.