论文标题

带有太阳引力镜头的光谱分辨成像

Spectrally resolved imaging with the solar gravitational lens

论文作者

Turyshev, Slava G., Toth, Viktor T.

论文摘要

我们考虑太阳引力透镜(SGL)的光学特性将太阳视为巨大的紧凑型体。使用我们先前开发的SGL波光处理处理,我们将其与代表光学望远镜的薄镜头进行卷积,并在望远镜焦平面上的单个像素位置的单个像素位置的功率谱密度和相关的光子通量估算。我们还考虑太阳能电晕,这是用SGL成像微弱对象时的主要噪声源。我们评估单个像素的信噪比作为波长的函数。为了阻止太阳能光,我们将传统的内部冠状动脉与lyot-stop的使用与外部偏置器(即星胸)进行了对比。一个外部的情况,不受观察望远镜的衍射极限的约束,使得使用小型望远镜(例如$ \ sim 40 $ 〜cm)进行空间和频谱分辨的成像进行SGL进行SGL,以从光学到中等范围(IR)进行多种多样的损失,并且具有实质性的损失。 MID-IR观测值特别有趣,因为行星在这些波长上是自发性的,产生了强信号,而太阳电晕的噪声明显较小。该频谱的这一部分包含众多感兴趣的外生物学和生物签名检测特征。我们开发了可以用来估计仪器要求的工具,并制定了最佳观察策略,以使用SGL进行高分辨率,频谱分辨的成像,最终提高了我们在遥远世界上确认和研究生活的能力。

We consider the optical properties of the solar gravitational lens (SGL) treating the Sun as a massive compact body. Using our previously developed wave-optical treatment of the SGL, we convolve it with a thin-lens representing an optical telescope, and estimate the power spectral density and associated photon flux at individual pixel locations on the image sensor at the focal plane of the telescope. We also consider the solar corona, which is the dominant noise source when imaging faint objects with the SGL. We evaluate the signal-to-noise ratio at individual pixels as a function of wavelength. To block out the solar light, we contrast the use of a conventional internal coronagraph with a Lyot-stop to an external occulter (i.e., starshade). An external occulter, not being a subject to the diffraction limit of the observing telescope, makes it possible to use small telescopes (e.g., $\sim 40$~cm) for spatially and spectrally resolved imaging with the SGL in a broad range of wavelengths from optical to mid-infrared (IR) and without the substantial loss of optical throughput that is characteristic to internal devices. Mid-IR observations are especially interesting as planets are self-luminous at these wavelengths, producing a strong signal, while there is significantly less noise from the solar corona. This part of the spectrum contains numerous features of interest for exobiology and biosignature detection. We develop tools that may be used to estimate instrument requirements and devise optimal observing strategies to use the SGL for high-resolution, spectrally resolved imaging, ultimately improving our ability to confirm and study the presence of life on a distant world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源