论文标题
在合奏Kalman滤波器中连续超参数优化(CHOP)
Continuous Hyper-parameter OPtimization (CHOP) in an ensemble Kalman filter
论文作者
论文摘要
实用的数据同化算法通常包含超参数,这可能是由于在集合卡尔曼过滤器中使用某些辅助技术(例如协方差通货膨胀和定位)而引起的,这是重新参数,例如模型和/或观察误差误差矩阵等某些数量的参数。鉴于已建立的同化算法的丰富性以及对同化算法引入超参数的方法的丰富性,人们可能会询问是否有可能开发出一种声音和通用方法来有效选择各种类型(有时是高维)超参数。这项工作旨在探索可行的(尽管可能部分)回答这个问题。我们的主要思想是基于这样一个概念,即可以将具有超参数的数据同化算法视为参数映射,该参数映射将一组感兴趣的数量(例如,模型状态变量和/或参数)链接到观测空间中相应的预测观察值。因此,超参数的选择可以作为参数估计问题进行重塑,其中我们的目标是以这样的方式调整超参数,以至于所得的预测观察结果可以在很大程度上与真实的观测值相匹配。从这个角度来看,我们提出了一个超参数估计工作流程,并研究了集合卡尔曼过滤器中此工作流程的性能。在一系列实验中,我们观察到,即使在存在相对较大的超级参数(最高$ 10^3 $)的情况下,提出的工作流程也有效地起作用,并且在各种条件下表现出相当良好且一致的性能。
Practical data assimilation algorithms often contain hyper-parameters, which may arise due to, for instance, the use of certain auxiliary techniques like covariance inflation and localization in an ensemble Kalman filter, the re-parameterization of certain quantities such as model and/or observation error covariance matrices, and so on. Given the richness of the established assimilation algorithms, and the abundance of the approaches through which hyper-parameters are introduced to the assimilation algorithms, one may ask whether it is possible to develop a sound and generic method to efficiently choose various types of (sometimes high-dimensional) hyper-parameters. This work aims to explore a feasible, although likely partial, answer to this question. Our main idea is built upon the notion that a data assimilation algorithm with hyper-parameters can be considered as a parametric mapping that links a set of quantities of interest (e.g., model state variables and/or parameters) to a corresponding set of predicted observations in the observation space. As such, the choice of hyper-parameters can be recast as a parameter estimation problem, in which our objective is to tune the hyper-parameters in such a way that the resulted predicted observations can match the real observations to a good extent. From this perspective, we propose a hyper-parameter estimation workflow and investigate the performance of this workflow in an ensemble Kalman filter. In a series of experiments, we observe that the proposed workflow works efficiently even in the presence of a relatively large amount (up to $10^3$) of hyper-parameters, and exhibits reasonably good and consistent performance under various conditions.