论文标题
对某些编织结族的琼斯多项式评估的一些评估
Some evaluations of Jones polynomials for certain families of weaving knots
论文作者
论文摘要
在本文中,我们为编织结$ W(3,n)$和$ W(P,2)$的决定因素提供了公式。我们计算了第一个同源组的尺寸,其系数分别是$ \ mathbb {z} _3 $的$ 3 $ -sphere $ s^3 $分别以$ w(3,n)$和$ W(p,2)$分支的双周期盖的_3 $。结果,对于某些$ n $的某些值,我们获得了$ w(3,n)$的无结数的较低限制。
In this paper, we derive formulae for the determinant of weaving knots $W(3,n)$ and $W(p,2)$. We calculate the dimension of the first homology group with coefficients in $\mathbb{Z}_3$ of the double cyclic cover of the $3$-sphere $S^3$ branched over $W(3,n)$ and $W(p,2)$ respectively. As a consequence, we obtain a lower bound of the unknotting number of $W(3,n)$ for certain values of $n$.