论文标题
代表性系统理论:一种编码,分析和转换表示形式的统一方法
Representational Systems Theory: A Unified Approach to Encoding, Analysing and Transforming Representations
论文作者
论文摘要
对表示形式的研究对于任何形式的交流都是至关重要的,我们有效利用它们的能力至关重要。本文介绍了一种新颖的理论 - 代表性系统理论 - 旨在从三个核心角度从三个核心角度来抽象地编码各种表示:语法,综合及其属性。通过介绍建筑空间的概念,我们能够在一个统一的范式下对这些核心组件进行编码。使用我们的代表性系统理论,有可能在结构上将一个系统中的表示形式转换为另一个系统的表示形式。我们的结构转化技术的固有方面是代表选择,其代表所具有的属性,例如它们的相对认知有效性或结构复杂性。提供一般结构转化技术的主要理论障碍是缺乏终止算法。代表系统理论允许在没有终止算法的情况下衍生部分变换。由于代表性系统理论提供了一种通用的编码代表体系方法,因此消除了进一步的关键障碍:需要设计特定于系统的结构转换算法,这是当不同系统采用不同的形式化方法时所必需的。因此,代表性系统理论是第一个提供统一方法来编码表示形式,通过结构转换支持表示形式的第一个通用框架,并具有广泛的实际应用。
The study of representations is of fundamental importance to any form of communication, and our ability to exploit them effectively is paramount. This article presents a novel theory -- Representational Systems Theory -- that is designed to abstractly encode a wide variety of representations from three core perspectives: syntax, entailment, and their properties. By introducing the concept of a construction space, we are able to encode each of these core components under a single, unifying paradigm. Using our Representational Systems Theory, it becomes possible to structurally transform representations in one system into representations in another. An intrinsic facet of our structural transformation technique is representation selection based on properties that representations possess, such as their relative cognitive effectiveness or structural complexity. A major theoretical barrier to providing general structural transformation techniques is a lack of terminating algorithms. Representational Systems Theory permits the derivation of partial transformations when no terminating algorithm can produce a full transformation. Since Representational Systems Theory provides a universal approach to encoding representational systems, a further key barrier is eliminated: the need to devise system-specific structural transformation algorithms, that are necessary when different systems adopt different formalisation approaches. Consequently, Representational Systems Theory is the first general framework that provides a unified approach to encoding representations, supports representation selection via structural transformations, and has the potential for widespread practical application.