论文标题

杨手机方程的固定理论解决方案的结构组的garsideness属性

Garsideness properties of structure groups of set-theoretic solutions of the Yang-Baxter equation

论文作者

Chouraqui, Fabienne

论文摘要

从辫子B组到Temperley-Lieb代数TL存在乘法同态。此外,简单元素中TL中的同态图像构成了TL基础矢量空间的基础。与B的情况相比,存在从非分级的,参与的设定理论解决方案到代数的综合g的综合同态,该解一直延伸至代数的同态。我们使用溶液的Garsideness属性构建了G图像的基础向量空间的有限基础。

There exists a multiplicative homomorphism from the braid group B to the Temperley-Lieb algebra TL. Moreover, the homomorphic images in TL of the simple elements form a basis for the vector space underlying TL. In analogy with the case of B, there exists a multiplicative homomorphism from the structure group G of a non-degenerate, involutive set-theoretic solution to an algebra, which extends to a homomorphism of algebras. We construct a finite basis of the underlying vector space of the image of G using the Garsideness properties of the solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源