论文标题
约旦框架中双曲线通货膨胀模型的分析解决方案和Noether对称性
Analytic solution and Noether symmetries for the hyperbolic inflationary model in the Jordan frame
论文作者
论文摘要
在空间平坦的FLRW背景几何形状中,将Noether对称分析用于研究多场宇宙学模型。重力作用积分由两个标量场组成,即Brans-Dicke场和第二个标量场最小化与重力耦合。但是,两个标量字段用动力学术语相互作用。已经发现该多场描述了约旦框架中双曲线通货膨胀的等效物。 Noether定理的应用限制了保存定律存在的模型的自由参数。我们发现字段方程形成一个可集成的动力系统,并得出了分析解决方案。
The Noether symmetry analysis is applied for the study of a multifield cosmological model in a spatially flat FLRW background geometry. The gravitational Action Integral consists of two scalar fields, the Brans-Dicke field and a second scalar field minimally coupled to gravity. However, the two scalar fields interact in the kinetic terms. This multifield has been found to describe the equivalent of hyperbolic inflation in the Jordan frame. The application of Noether's theorems constrain the free parameters of the model that conservation laws exist. We find that the field equations form an integrable dynamical system and the analytic solution is derived.