论文标题
动力学Kolmogorov-Fokker-Planck方程的全局$ l_p $估计以发散形式
Global $L_p$ estimates for kinetic Kolmogorov-Fokker-Planck equations in divergence form
论文作者
论文摘要
我们在动力学Kolmogorov-Fokker-Planck(KFP)方程中以差异形式提出了先验估计值和独特的可溶性。相对于速度变量$ v $,领先的系数均匀地界定,并满足消失的平均振荡(VMO)类型条件。我们分别考虑$ l_2 $ case,并处理包括相对论KFP方程的更多通用方程。
We present a priori estimates and unique solvability results in the mixed-norm Lebesgue spaces for kinetic Kolmogorov-Fokker-Planck (KFP) equation in divergence form. The leading coefficients are bounded uniformly nondegenerate with respect to the velocity variable $v$ and satisfy a vanishing mean oscillation (VMO) type condition. We consider the $L_2$ case separately and treat more general equations which include the relativistic KFP equation.