论文标题
混合量:洛万(Lorawan)的基于增强学习的资源分配算法
MIX-MAB: Reinforcement Learning-based Resource Allocation Algorithm for LoRaWAN
论文作者
论文摘要
本文着重于根据数据包输送比率(PDR)(即,在远程广阔的区域网络(Lorawan)中通过End设备(EDS)发送的成功接收到的数据包的数量来改善资源分配算法。设置传输参数会显着影响PDR。我们采用强化学习(RL)提出了一种资源分配算法,该算法使ED可以以分布式方式配置其传输参数。我们将资源分配问题建模为多臂强盗(MAB),然后通过提出一种名为Mix-MAB的两相算法来解决它,该算法由探索和开发(EXP3)和连续消除(SE)算法的指数重量组成。我们通过模拟结果评估混合MAB性能,并将其与其他现有方法进行比较。数值结果表明,就收敛时间和PDR而言,所提出的解决方案的性能优于现有方案。
This paper focuses on improving the resource allocation algorithm in terms of packet delivery ratio (PDR), i.e., the number of successfully received packets sent by end devices (EDs) in a long-range wide-area network (LoRaWAN). Setting the transmission parameters significantly affects the PDR. Employing reinforcement learning (RL), we propose a resource allocation algorithm that enables the EDs to configure their transmission parameters in a distributed manner. We model the resource allocation problem as a multi-armed bandit (MAB) and then address it by proposing a two-phase algorithm named MIX-MAB, which consists of the exponential weights for exploration and exploitation (EXP3) and successive elimination (SE) algorithms. We evaluate the MIX-MAB performance through simulation results and compare it with other existing approaches. Numerical results show that the proposed solution performs better than the existing schemes in terms of convergence time and PDR.