论文标题
巨型麦哲伦望远镜高对比度自适应光学量相位测试床(P-HCAT):带有金字塔波前传感器和全息图分散的边缘传感器(HDFS)的片段/花瓣相相的实验室测试
The Giant Magellan Telescope high contrast adaptive optics phasing testbed (p-HCAT): lab tests of segment/petal phasing with a pyramid wavefront sensor and a holographic dispersed fringe sensor (HDFS) in turbulence
论文作者
论文摘要
巨型麦哲伦望远镜(GMT)设计由七个圆形的8.4 m直径镜段组成,这些镜像段被大> 30 cm的间隙隔开,从而为光路差异而导致弯曲,段振动,风力缓冲,温度效应和大气观察而导致光路差的波动可能性。为了利用GMT的全部衍射有限孔径用于自然导向星的自适应光学(NGSAO)科学,必须将七个镜像段共同遵循,以在波长的一部分之内。 GMT的当前设计涉及七个自适应次级镜子,一个离轴分散的边缘传感器(AGW的一部分)和一个金字塔波前传感器(PYWFS; NGWS的一部分)来测量和纠正段之间的总路径长度,但是这些方法尚未测试“始终环境”。我们介绍了“ GMT高对比度自适应光学相相测试床”(P-HCAT)的设计和工作原型,该测试床(P-HCAT)利用现有的Magao-X AO仪器来展示GMT NGSAO科学的段相传感和同时的AO-control。我们使用Magao-X的Pywfs和一个新型的全息镜分散条纹传感器(HDFS),介绍了一个GMT段的闭环活塞控制的第一个测试结果,具有和没有模拟的大气湍流。我们表明,单独使用〜0.6 arcsec和〜1.2 Arcsec在控制片段的弧度上,由于非线性模态串扰和PYWFS检测器上段间隙的不良像素采样而导致的湍流,仅在控制节段活塞方面没有成功。我们报告了使用新型HDF控制活塞的替代解决方案的成功,同时用PYWF纯粹作为斜率传感器控制所有其他模式(删除了活塞模式)。这种“第二个通道” WFS方法很好地控制了活塞在50 nm rms和$ \ pm $ 10 $μ$ m m $ m $ m动态范围下,在模拟的0.6 ARCSEC大气观看条件下。
The Giant Magellan Telescope (GMT) design consists of seven circular 8.4-m diameter mirror segments that are separated by large > 30 cm gaps, creating the possibility of fluctuations in optical path differences due to flexure, segment vibrations, wind buffeting, temperature effects, and atmospheric seeing. In order to utilize the full diffraction-limited aperture of the GMT for natural guide star adaptive optics (NGSAO) science, the seven mirror segments must be co-phased to well within a fraction of a wavelength. The current design of the GMT involves seven adaptive secondary mirrors, an off-axis dispersed fringe sensor (part of the AGWS), and a pyramid wavefront sensor (PyWFS; part of the NGWS) to measure and correct the total path length between segment pairs, but these methods have yet to be tested "end-to-end" in a lab environment. We present the design and working prototype of a "GMT High-Contrast Adaptive Optics phasing Testbed" (p-HCAT) which leverages the existing MagAO-X AO instrument to demonstrate segment phase sensing and simultaneous AO-control for GMT NGSAO science. We present the first test results of closed-loop piston control with one GMT segment using MagAO-X's PyWFS and a novel Holographic Dispersed Fringe Sensor (HDFS) with and without simulated atmospheric turbulence. We show that the PyWFS alone was unsuccessful at controlling segment piston with generated ~ 0.6 arcsec and ~ 1.2 arcsec seeing turbulence due to non-linear modal cross-talk and poor pixel sampling of the segment gaps on the PyWFS detector. We report the success of an alternate solution to control piston using the novel HDFS while controlling all other modes with the PyWFS purely as a slope sensor (piston mode removed). This "second channel" WFS method worked well to control piston to within 50 nm RMS and $\pm$ 10 $μ$m dynamic range under simulated 0.6 arcsec atmospheric seeing conditions.