论文标题

严格倍增的特殊肘

Special cubulation of strict hyperbolization

论文作者

Lafont, Jean-François, Ruffoni, Lorenzo

论文摘要

我们证明,通过Charney和Davis严格的倍增过程获得的Gromov双曲线基团几乎是紧凑的,因此是线性和残留有限的。我们的策略包括在某个双重CAT(0)立方复合物上构建倍增群体的作用。结果,严格倍增的所有常见应用都显示出几乎紧凑的特殊基本组提供了歧管。特别是,我们获得了闭合的负弯曲的riemannian流形的示例,其基本组是线性的,实际上是代数纤维。

We prove that the Gromov hyperbolic groups obtained by the strict hyperbolization procedure of Charney and Davis are virtually compact special, hence linear and residually finite. Our strategy consists in constructing an action of a hyperbolized group on a certain dual CAT(0) cubical complex. As a result, all the common applications of strict hyperbolization are shown to provide manifolds with virtually compact special fundamental group. In particular, we obtain examples of closed negatively curved Riemannian manifolds whose fundamental groups are linear and virtually algebraically fiber.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源