论文标题
准林 - 朴素复合物和几乎Cohen-Macaulay
Quasi-forest simplicial complexes and almost Cohen-Macaulay
论文作者
论文摘要
在本文中,我们研究了准森林简单综合体,并定义了简单$ k $ -cycle的概念(用$ \ Mathcal {s} _K $表示)和simplicial $ k $ - 点(由$ \ Mathcal {p} {p}表示,我们表明,当它没有任何$ \ MATHCAL {p} _k $和任何$ \ Mathcal {s} _k $ for $ k \ geq 3 $时,且仅当它没有任何$ \ mathcal {p} _k $和任何$ \ mathcal {p} _k $时,就表明了一个简单的复杂$δ$。此外,我们还表征了几乎Cohen-Macaulay准林 - 森林简单复合物。最后,我们证明循环图$ g = C_n $几乎是Cohen-Macaulay,并且仅当$ n = 3,4,5,6,7,8,9,11 $。
In this paper we study the quasi-forest simplicial complexes and we define the concept of simplicial $k$-cycle (denoted by $\mathcal{S}_k$) and simplicial $k$-point (denoted by $\mathcal{P}_k$). We show that a simplicial complex $Δ$ is quasi-forest if and only if it does not have any $\mathcal{P}_k$ and any $\mathcal{S}_k$ for $k\geq 3$. Furthermore we characterize almost Cohen-Macaulay quasi-forest simplicial complexes. In the end we show that the cycle graph $G=C_n$ is almost Cohen-Macaulay if and only if $n=3,4,5,6,7,8,9,11$.