论文标题
从功能重归其化组中的订单参数的关键概率分布
Critical probability distributions of the order parameter from the functional renormalization group
论文作者
论文摘要
我们表明,功能重归其化组(FRG)允许计算强相关随机变量之和的概率分布函数。以临界性的三维ISING模型并使用FRG的最简单实现的示例,我们计算顺序参数的概率分布函数或等效的对数,称为大偏差理论中的速率函数。我们计算了整个通用缩放函数的家族,在系统尺寸$ l $和无限系统的相关长度$ξ_ {\ infty} $ diverge中获得,而比率$ζ= l/ξ_ {\ infty} $固定。它与数值模拟非常准确。
We show that the functional renormalization group (FRG) allows for the calculation of the probability distribution function of the sum of strongly correlated random variables. On the example of the three-dimensional Ising model at criticality and using the simplest implementation of the FRG, we compute the probability distribution functions of the order parameter or equivalently its logarithm, called the rate functions in large deviations theory. We compute the entire family of universal scaling functions, obtained in the limit where the system size $L$ and the correlation length of the infinite system $ξ_{\infty}$ diverge, with the ratio $ζ=L/ξ_{\infty}$ held fixed. It compares very accurately with numerical simulations.