论文标题

将蒙特卡洛树搜索与证明数字搜索结合

Combining Monte-Carlo Tree Search with Proof-Number Search

论文作者

Doe, Elliot, Winands, Mark H. M., Soemers, Dennis J. N. J., Browne, Cameron

论文摘要

证明数字搜索(PNS)和蒙特卡洛树搜索(MCT)已成功地用于一系列游戏中的决策。本文提出了一种称为PN-MCTS的新方法,该方法通过将证明和调解数字的概念纳入MCT的UCT公式来结合这两种树搜索方法。实验结果表明,PN-MCT在多个游戏中的基本MCT都优于基本MCT,包括动作线,Minishogi,Knightthrough和Awari,获得的获胜率高达94.0%。

Proof-Number Search (PNS) and Monte-Carlo Tree Search (MCTS) have been successfully applied for decision making in a range of games. This paper proposes a new approach called PN-MCTS that combines these two tree-search methods by incorporating the concept of proof and disproof numbers into the UCT formula of MCTS. Experimental results demonstrate that PN-MCTS outperforms basic MCTS in several games including Lines of Action, MiniShogi, Knightthrough, and Awari, achieving win rates up to 94.0%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源