论文标题
部分可观测时空混沌系统的无模型预测
Col-OSSOS: The Distribution of Surface Classes in Neptune's Resonances
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The distribution of surface classes of resonant trans-Neptunian objects (TNOs) provides constraints on the protoplanetesimal disk and giant planet migration. To better understand the surfaces of TNOs, the Colours of the Outer Solar System Origins Survey (Col-OSSOS) acquired multi-band photometry of 102 TNOs, and found that the surfaces of TNOs can be well described by two surface classifications, BrightIR and FaintIR. These classifications both include optically red members and are differentiated predominantly based on whether their near-infrared spectral slope is similar to their optical spectral slope. The vast majority of cold classical TNOs, with dynamically quiescent orbits, have the FaintIR surface classification, and we infer that TNOs in other dynamical classifications with FaintIR surfaces share a common origin with the cold classical TNOs. Comparison between the resonant populations and the possible parent populations of cold classical and dynamically excited TNOs reveal that the 3:2 has minimal contributions from the FaintIR class, which could be explained by the $ν_8$ secular resonance clearing the region near the 3:2 before any sweeping capture occurred. Conversely, the fraction of FaintIR objects in the 4:3 resonance, 2:1 resonance, and the resonances within the cold classical belt, suggest that the FaintIR surface formed in the protoplanetary disk between 34.6 and 47 au, though the outer bound depends on the degree of resonance sweeping during migration. The presence and absence of the FaintIR surfaces in Neptune's resonances provides critical constraints for the history of Neptune's migration, the evolution of the $ν_8$, and the surface class distribution in the initial planetesimal disk