论文标题
在改良的hartle形式主义中旋转各向异性的丝状球体
Rotating anisotropic stringy spheroid in a modified Hartle formalism
论文作者
论文摘要
在这里,我们查看了Hartle Metric的应用,以描述球形弦云/全局单极解的旋转版本。虽然此解决方案的旋转版本以前是通过Newman-Janis算法构建的,但该过程并不能保留状态方程。 Hartle方法至少在缓慢旋转的扰动溶液的意义上可以保存状态方程。除了可以用于建模旋转弦云或类似系统区域的生成方程的直接实用性外,这项工作还表明,在不同的eigenvalues之间的状态方程之后,可以使Hartle Metric适应具有SEGRE类型[(11)(1,1)]的segre类型[(11)(1,1)]的各向异性系统的缓慢旋转。
Here we look at an application of the Hartle metric to describe a rotating version of the spherical string cloud/ global monopole solution. While rotating versions of this solution have previously been constructed via the Newman-Janis algorithm, that process does not preserve the equation of state. The Hartle method allows for preservation of equation of state, at least in the sense of a slowly rotating perturbative solution. In addition to the direct utility of generating equations which could be used to model a region of a rotating string cloud or similar system, this work shows that it is possible to adapt the Hartle metric to slowly rotating anisotropic systems with Segre type [(11)(1,1)] following an equation of state between the distinct eigenvalues.