论文标题

基于纹理提取方法基于改进分类的结合框架

Texture Extraction Methods Based Ensembling Framework for Improved Classification

论文作者

Pandey, Vijay, Kalra, Trapti, Gubba, Mayank, Faisal, Mohammed

论文摘要

从工业检查到与健康相关的应用,基于纹理的分类解决方案在许多领域都证明了它们在许多领域的重要性。已经基于纹理功能学习和基于CNN的架构开发了新方法,以解决具有富含纹理功能的图像的计算机视觉案例。近年来,已经出现了解决基于纹理的分类问题并证明最先进的结果的体系结构。但是,这些方法的一个局限性是它们不能声称适合所有类型的图像纹理模式。每种技术仅对特定纹理类型都有优势。为了解决这一缺点,我们提出了一个框架,该框架将多个基于纹理的技术与CNN骨架结合在一起,以提取最相关的纹理功能。这使该模型能够以自选择性的方式进行训练,并比当前发布的基准测试得出改进的结果 - 具有几乎相同数量的模型参数。我们提出的框架同时在大多数纹理类型上效果很好,并可以灵活地适合基于纹理的其他方法,以获得比现有体系结构更好的结果。在这项工作中,首先,我们对单独使用时现有技术的相对重要性进行分析,并与基准数据集中的其他TE方法结合使用。其次,我们表明,代表空间信息的全球平均池 - 与网络中应用的TE方法相比,在培训基于纹理的分类任务时的意义较小。最后,我们通过使用我们建议的框架组合了三种现有的基于纹理的技术,为几个基于纹理的基准数据集提供了最新的结果。

Texture-based classification solutions have proven their significance in many domains, from industrial inspections to health-related applications. New methods have been developed based on texture feature learning and CNN-based architectures to address computer vision use cases for images with rich texture-based features. In recent years, architectures solving texture-based classification problems and demonstrating state-of-the-art results have emerged. Yet, one limitation of these approaches is that they cannot claim to be suitable for all types of image texture patterns. Each technique has an advantage for a specific texture type only. To address this shortcoming, we propose a framework that combines more than one texture-based techniques together, uniquely, with a CNN backbone to extract the most relevant texture features. This enables the model to be trained in a self-selective manner and produce improved results over current published benchmarks -- with almost same number of model parameters. Our proposed framework works well on most texture types simultaneously and allows flexibility for additional texture-based methods to be accommodated to achieve better results than existing architectures. In this work, firstly, we present an analysis on the relative importance of existing techniques when used alone and in combination with other TE methods on benchmark datasets. Secondly, we show that Global Average Pooling which represents the spatial information -- is of less significance in comparison to the TE method(s) applied in the network while training for texture-based classification tasks. Finally, we present state-of-the-art results for several texture-based benchmark datasets by combining three existing texture-based techniques using our proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源