论文标题

通过动态估计的行动成本进行计划

Planning with Dynamically Estimated Action Costs

论文作者

Weiss, Eyal, Kaminka, Gal A.

论文摘要

有关行动成本的信息对于现实世界中的AI规划应用程序至关重要。最近的方法不仅依靠声明性的行动模型,还使用了在计划阶段应用的黑盒外部动作成本估算器,通常是从数据中学到的。但是,这些可能在计算上很昂贵,并产生不确定的值。在本文中,我们建议对确定性计划的概括,并允许在多个估计器之间选择动作成本,以平衡计算时间与有限估计不确定性。这使问题表示能力更丰富,并且相应地更现实。重要的是,它允许计划者限制计划的准确性,从而提高可靠性,同时减少不必要的计算负担,这对于扩展到大问题至关重要。我们介绍了一种搜索算法,概括了$ a^*$,该算法解决了这些计划问题,并进行了其他算法扩展。除了理论保证外,与替代方案相比,广泛的实验还显示出大量的运行时节省节省。

Information about action costs is critical for real-world AI planning applications. Rather than rely solely on declarative action models, recent approaches also use black-box external action cost estimators, often learned from data, that are applied during the planning phase. These, however, can be computationally expensive, and produce uncertain values. In this paper we suggest a generalization of deterministic planning with action costs that allows selecting between multiple estimators for action cost, to balance computation time against bounded estimation uncertainty. This enables a much richer -- and correspondingly more realistic -- problem representation. Importantly, it allows planners to bound plan accuracy, thereby increasing reliability, while reducing unnecessary computational burden, which is critical for scaling to large problems. We introduce a search algorithm, generalizing $A^*$, that solves such planning problems, and additional algorithmic extensions. In addition to theoretical guarantees, extensive experiments show considerable savings in runtime compared to alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源