论文标题

SCAMP:用于摄像机测量生理信号的合成学

SCAMPS: Synthetics for Camera Measurement of Physiological Signals

论文作者

McDuff, Daniel, Wander, Miah, Liu, Xin, Hill, Brian L., Hernandez, Javier, Lester, Jonathan, Baltrusaitis, Tadas

论文摘要

摄像机和计算算法的使用,用于无创,低成本和可扩展的生理测量(例如心脏和肺)生命体征非常有吸引力。但是,代表各种环境,身体运动,照明条件和生理状态的多种数据是费力的,耗时且昂贵的。合成数据已证明是在机器学习的几个领域中是有价值的工具,但并未广泛用于摄像机测量生理状态。合成数据提供“完美”标签(例如,没有噪声和精确的同步),可能无法获得其他标签(例如,精确的像素级分割图),并提供了对数据集中变化和多样性的高度控制。我们提供Scamps,这是一个合成数据集,其中包含2,800个视频(168万帧),并带有对齐的心脏和呼吸信号以及面部动作强度。 RGB框架与分段图一起提供。我们提供有关潜在波形的精确描述性统计数据,包括beat间间隔,心率变异性和脉搏到达时间。最后,我们介绍了这些综合数据和对现实数据集的测试的基线结果培训,以说明可推广性。

The use of cameras and computational algorithms for noninvasive, low-cost and scalable measurement of physiological (e.g., cardiac and pulmonary) vital signs is very attractive. However, diverse data representing a range of environments, body motions, illumination conditions and physiological states is laborious, time consuming and expensive to obtain. Synthetic data have proven a valuable tool in several areas of machine learning, yet are not widely available for camera measurement of physiological states. Synthetic data offer "perfect" labels (e.g., without noise and with precise synchronization), labels that may not be possible to obtain otherwise (e.g., precise pixel level segmentation maps) and provide a high degree of control over variation and diversity in the dataset. We present SCAMPS, a dataset of synthetics containing 2,800 videos (1.68M frames) with aligned cardiac and respiratory signals and facial action intensities. The RGB frames are provided alongside segmentation maps. We provide precise descriptive statistics about the underlying waveforms, including inter-beat interval, heart rate variability, and pulse arrival time. Finally, we present baseline results training on these synthetic data and testing on real-world datasets to illustrate generalizability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源