论文标题
基于稀疏的多项式膨胀方法,用于概率瞬态稳定性评估和增强
A Sparse Polynomial Chaos Expansion-Based Method for Probabilistic Transient Stability Assessment and Enhancement
论文作者
论文摘要
本文提出了一种自适应稀疏多项式混乱(PCE)的方法,以量化不确定性对临界清除时间(CCT)的影响,这是瞬态稳定性分析中重要的指数。所提出的方法不仅可以给出概率CCT(PCCT)(PCCT)的概率特征(例如平均值,方差,概率密度函数)的快速准确估计,而且还提供了有关PCCT方差的随机输入敏感性的关键信息。利用灵敏度信息,可以制定缓解措施以提高瞬态稳定性。关于WSCC 9-BUS系统的数值研究表明,与Monte Carlo Simulation方法相比,该方法的高精度和效率。还验证了提供的灵敏度信息以及缓解措施在瞬态稳定性增强中的有效性。
This paper proposes an adaptive sparse polynomial chaos expansion(PCE)-based method to quantify the impacts of uncertainties on critical clearing time (CCT) that is an important index in transient stability analysis. The proposed method can not only give fast and accurate estimations for the probabilistic characteristics (e.g., mean, variance, probability density function) of the probabilistic CCT (PCCT), but also provides crucial information about the sensitivity of random inputs with respect to the variance of PCCT. Utilizing the sensitivity information, mitigation measures can be developed for transient stability enhancement. Numerical studies on the WSCC 9-bus system demonstrate the high accuracy and efficiency of the proposed method compared to the Monte Carlo simulation method. The provided sensitivity information and the effectiveness of mitigation measures in transient stability enhancement are also verified.