论文标题

是双空间的非积极操作员系统

Non-unital operator systems that are dual spaces

论文作者

Jia, Yu-Shu, Ng, Chi-Keung

论文摘要

我们将对$ \ MATHCAL {L}(H)$的任意自我预科弱$^*$ - 封闭子空间进行抽象表征(配备了诱导的矩阵标准,诱导的矩阵锥和诱导的弱$^*$ - 拓扑)。为此,我们获得了$^*$ - 运算符的Bonsall结果的矩阵类似物,配备了封闭矩阵锥体。在途中,我们观察到,对于配备矩阵锥的$^*$ - 向量$ x $(尤其是当$ x $是操作员系统或操作员系统的双空间时),线性映射$ ϕ:x \ to m_n $是完全积极的,并且仅当线性函数$ [x______ {i,j} i,j} i,j} i,j} i,j} \ sum_ {i,j = 1}^n ϕ(x_ {i,j})_ {i,j} $ on $ m_n(x)$是正面的。

We will give an abstract characterization of an arbitrary self-adjoint weak$^*$-closed subspace of $\mathcal{L}(H)$ (equipped with the induced matrix norm, the induced matrix cone and the induced weak$^*$-topology). In order to do this, we obtain a matrix analogues of a result of Bonsall for $^*$-operator spaces equipped with closed matrix cones. On our way, we observe that for a $^*$-vector $X$ equipped with a matrix cone (in particular, when $X$ is an operator system or the dual space of an operator system), a linear map $ϕ:X\to M_n$ is completely positive if and only if linear functional $[x_{i,j}]_{i,j}\mapsto \sum_{i,j=1}^n ϕ(x_{i,j})_{i,j}$ on $M_n(X)$ is positive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源