论文标题

通过深神经网络的盲目监视图像质量评估与视觉显着性结合

Blind Surveillance Image Quality Assessment via Deep Neural Network Combined with the Visual Saliency

论文作者

Lu, Wei, Sun, Wei, Zhu, Wenhan, Min, Xiongkuo, Zhang, Zicheng, Wang, Tao, Zhai, Guangtao

论文摘要

智能视频监视系统(IVSS)可以自动分析监视图像(SI)的内容并减轻体力劳动的负担。但是,SIS在获取,压缩和传输过程中可能会遭受质量下降,这使得IVSS难以理解SIS的内容。在本文中,我们首先进行了一个示例实验(即面部检测任务),以证明SIS的质量对IVSS的性能产生了至关重要的影响,然后提出了基于显着的深神经网络,用于对SIS的盲目质量评估,这有助于IVSS筛选低质量的SIS并提高检测和识别性能和识别性能。具体而言,我们首先计算SI的显着性图以选择最突出的局部区域,因为显着区域通常包含用于机器视觉的丰富语义信息,因此对SIS的整体质量产生了很大的影响。接下来,采用卷积神经网络(CNN)来提取整个图像和局部区域的质量感知功能,然后分别通过完全连接的(FC)网络映射到全球和本地质量分数中。最后,将整体质量得分计算为全球和本地质量分数的加权总和。 SI质量数据库(SIQD)的实验结果表明,所提出的方法的表现都比最新的BIQA方法比较了。

The intelligent video surveillance system (IVSS) can automatically analyze the content of the surveillance image (SI) and reduce the burden of the manual labour. However, the SIs may suffer quality degradations in the procedure of acquisition, compression, and transmission, which makes IVSS hard to understand the content of SIs. In this paper, we first conduct an example experiment (i.e. the face detection task) to demonstrate that the quality of the SIs has a crucial impact on the performance of the IVSS, and then propose a saliency-based deep neural network for the blind quality assessment of the SIs, which helps IVSS to filter the low-quality SIs and improve the detection and recognition performance. Specifically, we first compute the saliency map of the SI to select the most salient local region since the salient regions usually contain rich semantic information for machine vision and thus have a great impact on the overall quality of the SIs. Next, the convolutional neural network (CNN) is adopted to extract quality-aware features for the whole image and local region, which are then mapped into the global and local quality scores through the fully connected (FC) network respectively. Finally, the overall quality score is computed as the weighted sum of the global and local quality scores. Experimental results on the SI quality database (SIQD) show that the proposed method outperforms all compared state-of-the-art BIQA methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源