论文标题
Metacyclic $ p $ -groups的最大循环亚组的结合类别
Conjugacy classes of maximal cyclic subgroups of metacyclic $p$-groups
论文作者
论文摘要
在本文中,我们将$η(g)$设置为有限组$ g $的最大循环亚组的结合类数量。我们计算所有MetacyClic $ p $ groups的$η(g)$。我们表明,如果$ g $是一种Metacyclic $ P $ - 订单$ P^n $,不是二面的,广义的Quaternion或Semi-DiheDral,则是$η(G)\ Ge N-2 $,我们确定何时保持平等。
In this paper, we set $η(G)$ to be the number of conjugacy classes of maximal cyclic subgroups of a finite group $G$. We compute $η(G)$ for all metacyclic $p$-groups. We show that if $G$ is a metacyclic $p$-group of order $p^n$ that is not dihedral, generalized quaternion, or semi-dihedral, then $η(G) \ge n-2$, and we determine when equality holds.