论文标题

WNNM图像denoising方法通过定向小波包的交叉促进

Cross-boosting of WNNM Image Denoising method by Directional Wavelet Packets

论文作者

Averbuch, Amir, Neittaanmäki, Pekka, Zheludev, Valery, Salhov, Moshe, Hauser, Jonathan

论文摘要

该论文通过将基于定向准分析小波包(QWP)与最新的加权核量规范(WNNM)denoising算法的方法结合在一起,提出了图像降级方案。基于QWP的DeNoising方法(QWPDN)由降级图像的多尺度QWP变换,使用双变量收缩方法的适应性局部软阈值应用于变换系数,以及从几个分解级别中恢复阈值系数的图像。合并的方法由QWPDN和WNNM算法的几个迭代组成,在每种迭代中,从一种算法的输出将输入提高到另一个算法。所提出的方法将QWPDN的功能融合在一起,即使在严重损坏的图像中捕获边缘和精细的纹理模式,并利用了WNNM算法固有的真实图像中的非本地自相似性。 多个实验将提出的方法与包括WNNM在内的六种高级denoing算法进行了比较,证实,在定量度量和视觉感知质量方面,合并的跨增强算法的合并均优于大多数。

The paper presents an image denoising scheme by combining a method that is based on directional quasi-analytic wavelet packets (qWPs) with the state-of-the-art Weighted Nuclear Norm Minimization (WNNM) denoising algorithm. The qWP-based denoising method (qWPdn) consists of multiscale qWP transform of the degraded image, application of adaptive localized soft thresholding to the transform coefficients using the Bivariate Shrinkage methodology, and restoration of the image from the thresholded coefficients from several decomposition levels. The combined method consists of several iterations of qWPdn and WNNM algorithms in a way that at each iteration the output from one algorithm boosts the input to the other. The proposed methodology couples the qWPdn capabilities to capture edges and fine texture patterns even in the severely corrupted images with utilizing the non-local self-similarity in real images that is inherent in the WNNM algorithm. Multiple experiments, which compared the proposed methodology with six advanced denoising algorithms, including WNNM, confirmed that the combined cross-boosting algorithm outperforms most of them in terms of both quantitative measure and visual perception quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源