论文标题
使用PADé尊重的泰勒膨胀物的累积电荷波动膨胀沿伪关键/冷冻线搜索QCD临界点
Searching for the QCD critical point along the pseudo-critical/freeze-out line using Padé-resummed Taylor expansions of cumulants of conserved charge fluctuations
论文作者
论文摘要
使用(2+1) - 最佳QCD计算在有限温度下产生的高统计数据集,我们从压力的第八阶系列扩展以及数量密度构造收敛半径的估计器。我们表明,在渐近极限中,压力和数量密度的估计值将相同。在伪临界温度附近,$ t_ {pc} \ simeq 156.5 $ 〜Mev,我们发现收敛半径的估计器为$μ_b/t \ gtrsim \ 3 $ 3 $,对于陌生性 - 中性物质。我们还提供了padé近似值的极点结构的结果,即在baryon化学电位的非零值下的压力,并表明[4,4]Padé的极结构与大于$ 135〜 $ MEV的温度和大于$ 135〜 $ MEV的临界点一致,而Baryon化学势势小于$μ_b/t \ sim \ sim \ 2.5 $。
Using high-statistics datasets generated in (2+1)-flavor QCD calculations at finite temperature we construct estimators for the radius of convergence from an eighth order series expansion of the pressure as well as the number density. We show that the estimator for pressure and number density will be identical in the asymptotic limit. In the vicinity of the pseudo-critical temperature, $T_{pc}\simeq 156.5$~MeV, we find the estimator of the radius of convergence to be $μ_B/T \gtrsim\ 3$ for strangeness-neutral matter. We also present results for the pole structure of the Padé approximants for the pressure at non-zero values of the baryon chemical potential and show that the pole structure of the [4,4] Padé is consistent with not having a critical point at temperatures larger than $135~$MeV and a baryon chemical potential smaller than $μ_B/T \sim \ 2.5$.