论文标题
贵宾犬:通过惩罚分发样本来改善几乎没有的学习
POODLE: Improving Few-shot Learning via Penalizing Out-of-Distribution Samples
论文作者
论文摘要
在这项工作中,我们建议使用分布式样本,即来自目标类别外部的未标记样本,以改善少量学习。具体而言,我们利用易于可用的分发样品来驱动分类器,以避免通过最大化原型到分布样品的距离,同时最大程度地减少分布样品的距离(即支持,查询数据)。我们的方法易于实现,不可知论的是提取器,轻量级,而没有任何额外的预训练费用,并且适用于电感和跨托架设置。对各种标准基准测试的广泛实验表明,所提出的方法始终提高具有不同架构的预审计网络的性能。
In this work, we propose to use out-of-distribution samples, i.e., unlabeled samples coming from outside the target classes, to improve few-shot learning. Specifically, we exploit the easily available out-of-distribution samples to drive the classifier to avoid irrelevant features by maximizing the distance from prototypes to out-of-distribution samples while minimizing that of in-distribution samples (i.e., support, query data). Our approach is simple to implement, agnostic to feature extractors, lightweight without any additional cost for pre-training, and applicable to both inductive and transductive settings. Extensive experiments on various standard benchmarks demonstrate that the proposed method consistently improves the performance of pretrained networks with different architectures.