论文标题
接触同源性和更高的闭合引理
Contact homology and higher dimensional closing lemmas
论文作者
论文摘要
我们开发了使用触点同源性在任何维度上研究REEB流平滑闭合引理的方法。作为一种应用,我们证明了Irie的猜想,指出强大的闭合引理可用于椭圆形的Reeb流动。我们的方法还适用于其他Reeb流,我们为Albers-Geiges-Zehmisch引入的一类示例说明了这一点。
We develop methods for studying the smooth closing lemma for Reeb flows in any dimension using contact homology. As an application, we prove a conjecture of Irie, stating that the strong closing lemma holds for Reeb flows on ellipsoids. Our methods also apply to other Reeb flows, and we illustrate this for a class of examples introduced by Albers-Geiges-Zehmisch.