论文标题
通常双曲线捕获的奇异性传播
Propagation of Singularity with Normally Hyperbolic Trapping
论文作者
论文摘要
我们证明了通常具有双曲线诱捕的微局部估计值。我们使用一种新型的符号类,该类是通过炸毁不稳定的歧管和纤维无穷大的交点来构建的。对于Kerr(-de保姆)空间上的标量波方程,与奇异性的标准传播相比,微局部估计值的额外损失是任意的。
We prove microlocal estimates with normally hyperbolic trapping. We use a new type of symbol class which is constructed by blowing up the intersection of the unstable manifold and the fiber infinity. For scalar wave equations on Kerr(-de Sitter) spacetimes, the extra loss of the microlocal estimates compared with the standard propagation of singularities is arbitrarily small.